What Are Lyapunov Exponents, and Why Are They Interesting?
نویسندگان
چکیده
At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.” Although it is not explicitly mentioned in this citation, there is a second unifying concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schrödinger operators. Here we take the opportunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle:
منابع مشابه
Quantifying chaos: a tale of two maps
In many applications, there is a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two maps through which it highlights t...
متن کاملChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
متن کاملLyapunov Exponents of Free Operators
Lyapunov exponents of a dynamical system are a useful tool to gauge the stability and complexity of the system. This paper offers a definition of Lyapunov exponents for a sequence of free linear operators. The definition is based on the concept of the extended Fuglede-Kadison determinant. We establish the existence of Lyapunov exponents, derive formulas for their calculation, and show that Lyap...
متن کاملLyapunov exponents, noise-induced synchronization, and Parrondo's paradox.
We show that Lyapunov exponents of a stochastic system, when computed for a specific realization of the noise process, are related to conditional Lyapunov exponents in deterministic systems. We propose to use the term stochastically induced regularity instead of noise-induced synchronization and explain the reason why. The nature of stochastically induced regularity is discussed: in some instan...
متن کاملInteractive comment on “Seasonal predictability of the winter precipitation over Iberian Peninsula and its relationship with finite-time Lyapunov exponents” by Daniel Garaboa-Paz et al
This manuscript proposes an interesting idea of relating dynamical indicators for atmospheric mixing with regional precipitation. By performing a correlation analysis between seasonally averaged summer-time finite-time Lyapunov exponents, winter precipitation and several teleconnection indices, they establish statistical linkages between these variables, which could be further associated with c...
متن کامل